3.2.99 \(\int \frac {\sec (e+f x) (a+a \sec (e+f x))^2}{(c+d \sec (e+f x))^3} \, dx\) [199]

3.2.99.1 Optimal result
3.2.99.2 Mathematica [C] (verified)
3.2.99.3 Rubi [A] (verified)
3.2.99.4 Maple [A] (verified)
3.2.99.5 Fricas [B] (verification not implemented)
3.2.99.6 Sympy [F]
3.2.99.7 Maxima [F(-2)]
3.2.99.8 Giac [A] (verification not implemented)
3.2.99.9 Mupad [B] (verification not implemented)

3.2.99.1 Optimal result

Integrand size = 31, antiderivative size = 130 \[ \int \frac {\sec (e+f x) (a+a \sec (e+f x))^2}{(c+d \sec (e+f x))^3} \, dx=\frac {3 a^2 \text {arctanh}\left (\frac {\sqrt {c-d} \tan \left (\frac {1}{2} (e+f x)\right )}{\sqrt {c+d}}\right )}{\sqrt {c-d} (c+d)^{5/2} f}+\frac {\left (a^2+a^2 \sec (e+f x)\right ) \tan (e+f x)}{2 (c+d) f (c+d \sec (e+f x))^2}+\frac {3 a^2 \tan (e+f x)}{2 (c+d)^2 f (c+d \sec (e+f x))} \]

output
3*a^2*arctanh((c-d)^(1/2)*tan(1/2*f*x+1/2*e)/(c+d)^(1/2))/(c+d)^(5/2)/f/(c 
-d)^(1/2)+1/2*(a^2+a^2*sec(f*x+e))*tan(f*x+e)/(c+d)/f/(c+d*sec(f*x+e))^2+3 
/2*a^2*tan(f*x+e)/(c+d)^2/f/(c+d*sec(f*x+e))
 
3.2.99.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 1.85 (sec) , antiderivative size = 249, normalized size of antiderivative = 1.92 \[ \int \frac {\sec (e+f x) (a+a \sec (e+f x))^2}{(c+d \sec (e+f x))^3} \, dx=\frac {a^2 (d+c \cos (e+f x)) \sec ^4\left (\frac {1}{2} (e+f x)\right ) \sec (e+f x) (1+\sec (e+f x))^2 \left (-\frac {6 i \arctan \left (\frac {(i \cos (e)+\sin (e)) \left (c \sin (e)+(-d+c \cos (e)) \tan \left (\frac {f x}{2}\right )\right )}{\sqrt {c^2-d^2} \sqrt {(\cos (e)-i \sin (e))^2}}\right ) (d+c \cos (e+f x))^2 (\cos (e)-i \sin (e))}{\sqrt {c^2-d^2} \sqrt {(\cos (e)-i \sin (e))^2}}+\frac {(c-d) (c+d) \sec (e) (-d \sin (e)+c \sin (f x))}{c^2}+\frac {(d+c \cos (e+f x)) \sec (e) \left (\left (c^2-4 c d-2 d^2\right ) \sin (e)+c (4 c+d) \sin (f x)\right )}{c^2}\right )}{8 (c+d)^2 f (c+d \sec (e+f x))^3} \]

input
Integrate[(Sec[e + f*x]*(a + a*Sec[e + f*x])^2)/(c + d*Sec[e + f*x])^3,x]
 
output
(a^2*(d + c*Cos[e + f*x])*Sec[(e + f*x)/2]^4*Sec[e + f*x]*(1 + Sec[e + f*x 
])^2*(((-6*I)*ArcTan[((I*Cos[e] + Sin[e])*(c*Sin[e] + (-d + c*Cos[e])*Tan[ 
(f*x)/2]))/(Sqrt[c^2 - d^2]*Sqrt[(Cos[e] - I*Sin[e])^2])]*(d + c*Cos[e + f 
*x])^2*(Cos[e] - I*Sin[e]))/(Sqrt[c^2 - d^2]*Sqrt[(Cos[e] - I*Sin[e])^2]) 
+ ((c - d)*(c + d)*Sec[e]*(-(d*Sin[e]) + c*Sin[f*x]))/c^2 + ((d + c*Cos[e 
+ f*x])*Sec[e]*((c^2 - 4*c*d - 2*d^2)*Sin[e] + c*(4*c + d)*Sin[f*x]))/c^2) 
)/(8*(c + d)^2*f*(c + d*Sec[e + f*x])^3)
 
3.2.99.3 Rubi [A] (verified)

Time = 0.36 (sec) , antiderivative size = 224, normalized size of antiderivative = 1.72, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.194, Rules used = {3042, 4475, 105, 105, 104, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec (e+f x) (a \sec (e+f x)+a)^2}{(c+d \sec (e+f x))^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (e+f x+\frac {\pi }{2}\right ) \left (a \csc \left (e+f x+\frac {\pi }{2}\right )+a\right )^2}{\left (c+d \csc \left (e+f x+\frac {\pi }{2}\right )\right )^3}dx\)

\(\Big \downarrow \) 4475

\(\displaystyle -\frac {a^2 \tan (e+f x) \int \frac {(\sec (e+f x) a+a)^{3/2}}{\sqrt {a-a \sec (e+f x)} (c+d \sec (e+f x))^3}d\sec (e+f x)}{f \sqrt {a-a \sec (e+f x)} \sqrt {a \sec (e+f x)+a}}\)

\(\Big \downarrow \) 105

\(\displaystyle -\frac {a^2 \tan (e+f x) \left (\frac {3 a \int \frac {\sqrt {\sec (e+f x) a+a}}{\sqrt {a-a \sec (e+f x)} (c+d \sec (e+f x))^2}d\sec (e+f x)}{2 (c+d)}-\frac {\sqrt {a-a \sec (e+f x)} (a \sec (e+f x)+a)^{3/2}}{2 a (c+d) (c+d \sec (e+f x))^2}\right )}{f \sqrt {a-a \sec (e+f x)} \sqrt {a \sec (e+f x)+a}}\)

\(\Big \downarrow \) 105

\(\displaystyle -\frac {a^2 \tan (e+f x) \left (\frac {3 a \left (\frac {a \int \frac {1}{\sqrt {a-a \sec (e+f x)} \sqrt {\sec (e+f x) a+a} (c+d \sec (e+f x))}d\sec (e+f x)}{c+d}-\frac {\sqrt {a-a \sec (e+f x)} \sqrt {a \sec (e+f x)+a}}{a (c+d) (c+d \sec (e+f x))}\right )}{2 (c+d)}-\frac {\sqrt {a-a \sec (e+f x)} (a \sec (e+f x)+a)^{3/2}}{2 a (c+d) (c+d \sec (e+f x))^2}\right )}{f \sqrt {a-a \sec (e+f x)} \sqrt {a \sec (e+f x)+a}}\)

\(\Big \downarrow \) 104

\(\displaystyle -\frac {a^2 \tan (e+f x) \left (\frac {3 a \left (\frac {2 a \int \frac {1}{a (c-d)+\frac {a (c+d) (\sec (e+f x) a+a)}{a-a \sec (e+f x)}}d\frac {\sqrt {\sec (e+f x) a+a}}{\sqrt {a-a \sec (e+f x)}}}{c+d}-\frac {\sqrt {a-a \sec (e+f x)} \sqrt {a \sec (e+f x)+a}}{a (c+d) (c+d \sec (e+f x))}\right )}{2 (c+d)}-\frac {\sqrt {a-a \sec (e+f x)} (a \sec (e+f x)+a)^{3/2}}{2 a (c+d) (c+d \sec (e+f x))^2}\right )}{f \sqrt {a-a \sec (e+f x)} \sqrt {a \sec (e+f x)+a}}\)

\(\Big \downarrow \) 218

\(\displaystyle -\frac {a^2 \tan (e+f x) \left (\frac {3 a \left (\frac {2 \arctan \left (\frac {\sqrt {c+d} \sqrt {a \sec (e+f x)+a}}{\sqrt {c-d} \sqrt {a-a \sec (e+f x)}}\right )}{\sqrt {c-d} (c+d)^{3/2}}-\frac {\sqrt {a-a \sec (e+f x)} \sqrt {a \sec (e+f x)+a}}{a (c+d) (c+d \sec (e+f x))}\right )}{2 (c+d)}-\frac {\sqrt {a-a \sec (e+f x)} (a \sec (e+f x)+a)^{3/2}}{2 a (c+d) (c+d \sec (e+f x))^2}\right )}{f \sqrt {a-a \sec (e+f x)} \sqrt {a \sec (e+f x)+a}}\)

input
Int[(Sec[e + f*x]*(a + a*Sec[e + f*x])^2)/(c + d*Sec[e + f*x])^3,x]
 
output
-((a^2*(-1/2*(Sqrt[a - a*Sec[e + f*x]]*(a + a*Sec[e + f*x])^(3/2))/(a*(c + 
 d)*(c + d*Sec[e + f*x])^2) + (3*a*((2*ArcTan[(Sqrt[c + d]*Sqrt[a + a*Sec[ 
e + f*x]])/(Sqrt[c - d]*Sqrt[a - a*Sec[e + f*x]])])/(Sqrt[c - d]*(c + d)^( 
3/2)) - (Sqrt[a - a*Sec[e + f*x]]*Sqrt[a + a*Sec[e + f*x]])/(a*(c + d)*(c 
+ d*Sec[e + f*x]))))/(2*(c + d)))*Tan[e + f*x])/(f*Sqrt[a - a*Sec[e + f*x] 
]*Sqrt[a + a*Sec[e + f*x]]))
 

3.2.99.3.1 Defintions of rubi rules used

rule 104
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_)), x_] :> With[{q = Denominator[m]}, Simp[q   Subst[Int[x^(q*(m + 1) - 1) 
/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)], x] 
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && L 
tQ[-1, m, 0] && SimplerQ[a + b*x, c + d*x]
 

rule 105
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(a + b*x)^(m + 1)*(c + d*x)^n*((e + f*x)^(p + 1)/((m + 
1)*(b*e - a*f))), x] - Simp[n*((d*e - c*f)/((m + 1)*(b*e - a*f)))   Int[(a 
+ b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, 
e, f, m, p}, x] && EqQ[m + n + p + 2, 0] && GtQ[n, 0] && (SumSimplerQ[m, 1] 
 ||  !SumSimplerQ[p, 1]) && NeQ[m, -1]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4475
Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_), x_Symbol] :> Simp[a 
^2*g*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[a - b*Csc[e + f*x]])) 
 Subst[Int[(g*x)^(p - 1)*(a + b*x)^(m - 1/2)*((c + d*x)^n/Sqrt[a - b*x]), x 
], x, Csc[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[ 
b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && (EqQ[p, 1] || In 
tegerQ[m - 1/2])
 
3.2.99.4 Maple [A] (verified)

Time = 0.80 (sec) , antiderivative size = 167, normalized size of antiderivative = 1.28

method result size
derivativedivides \(\frac {8 a^{2} \left (\frac {\tan \left (\frac {f x}{2}+\frac {e}{2}\right )}{4 \left (c +d \right ) \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{2} c -\tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{2} d -c -d \right )^{2}}+\frac {-\frac {3 \tan \left (\frac {f x}{2}+\frac {e}{2}\right )}{8 \left (c +d \right ) \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{2} c -\tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{2} d -c -d \right )}+\frac {3 \,\operatorname {arctanh}\left (\frac {\left (c -d \right ) \tan \left (\frac {f x}{2}+\frac {e}{2}\right )}{\sqrt {\left (c +d \right ) \left (c -d \right )}}\right )}{8 \left (c +d \right ) \sqrt {\left (c +d \right ) \left (c -d \right )}}}{c +d}\right )}{f}\) \(167\)
default \(\frac {8 a^{2} \left (\frac {\tan \left (\frac {f x}{2}+\frac {e}{2}\right )}{4 \left (c +d \right ) \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{2} c -\tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{2} d -c -d \right )^{2}}+\frac {-\frac {3 \tan \left (\frac {f x}{2}+\frac {e}{2}\right )}{8 \left (c +d \right ) \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{2} c -\tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{2} d -c -d \right )}+\frac {3 \,\operatorname {arctanh}\left (\frac {\left (c -d \right ) \tan \left (\frac {f x}{2}+\frac {e}{2}\right )}{\sqrt {\left (c +d \right ) \left (c -d \right )}}\right )}{8 \left (c +d \right ) \sqrt {\left (c +d \right ) \left (c -d \right )}}}{c +d}\right )}{f}\) \(167\)
risch \(\frac {i a^{2} \left (-c^{3} {\mathrm e}^{3 i \left (f x +e \right )}+4 c^{2} d \,{\mathrm e}^{3 i \left (f x +e \right )}+2 c \,d^{2} {\mathrm e}^{3 i \left (f x +e \right )}+4 c^{3} {\mathrm e}^{2 i \left (f x +e \right )}+c^{2} d \,{\mathrm e}^{2 i \left (f x +e \right )}+8 c \,d^{2} {\mathrm e}^{2 i \left (f x +e \right )}+2 d^{3} {\mathrm e}^{2 i \left (f x +e \right )}+c^{3} {\mathrm e}^{i \left (f x +e \right )}+12 c^{2} d \,{\mathrm e}^{i \left (f x +e \right )}+2 c \,d^{2} {\mathrm e}^{i \left (f x +e \right )}+4 c^{3}+c^{2} d \right )}{c^{2} \left (c +d \right )^{2} f \left ({\mathrm e}^{2 i \left (f x +e \right )} c +2 d \,{\mathrm e}^{i \left (f x +e \right )}+c \right )^{2}}+\frac {3 a^{2} \ln \left ({\mathrm e}^{i \left (f x +e \right )}+\frac {i c^{2}-i d^{2}+\sqrt {c^{2}-d^{2}}\, d}{\sqrt {c^{2}-d^{2}}\, c}\right )}{2 \sqrt {c^{2}-d^{2}}\, \left (c +d \right )^{2} f}-\frac {3 a^{2} \ln \left ({\mathrm e}^{i \left (f x +e \right )}-\frac {i c^{2}-i d^{2}-\sqrt {c^{2}-d^{2}}\, d}{\sqrt {c^{2}-d^{2}}\, c}\right )}{2 \sqrt {c^{2}-d^{2}}\, \left (c +d \right )^{2} f}\) \(355\)

input
int(sec(f*x+e)*(a+a*sec(f*x+e))^2/(c+d*sec(f*x+e))^3,x,method=_RETURNVERBO 
SE)
 
output
8/f*a^2*(1/4*tan(1/2*f*x+1/2*e)/(c+d)/(tan(1/2*f*x+1/2*e)^2*c-tan(1/2*f*x+ 
1/2*e)^2*d-c-d)^2+3/4/(c+d)*(-1/2*tan(1/2*f*x+1/2*e)/(c+d)/(tan(1/2*f*x+1/ 
2*e)^2*c-tan(1/2*f*x+1/2*e)^2*d-c-d)+1/2/(c+d)/((c+d)*(c-d))^(1/2)*arctanh 
((c-d)*tan(1/2*f*x+1/2*e)/((c+d)*(c-d))^(1/2))))
 
3.2.99.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 282 vs. \(2 (117) = 234\).

Time = 0.31 (sec) , antiderivative size = 622, normalized size of antiderivative = 4.78 \[ \int \frac {\sec (e+f x) (a+a \sec (e+f x))^2}{(c+d \sec (e+f x))^3} \, dx=\left [\frac {3 \, {\left (a^{2} c^{2} \cos \left (f x + e\right )^{2} + 2 \, a^{2} c d \cos \left (f x + e\right ) + a^{2} d^{2}\right )} \sqrt {c^{2} - d^{2}} \log \left (\frac {2 \, c d \cos \left (f x + e\right ) - {\left (c^{2} - 2 \, d^{2}\right )} \cos \left (f x + e\right )^{2} + 2 \, \sqrt {c^{2} - d^{2}} {\left (d \cos \left (f x + e\right ) + c\right )} \sin \left (f x + e\right ) + 2 \, c^{2} - d^{2}}{c^{2} \cos \left (f x + e\right )^{2} + 2 \, c d \cos \left (f x + e\right ) + d^{2}}\right ) + 2 \, {\left (a^{2} c^{3} + 4 \, a^{2} c^{2} d - a^{2} c d^{2} - 4 \, a^{2} d^{3} + {\left (4 \, a^{2} c^{3} + a^{2} c^{2} d - 4 \, a^{2} c d^{2} - a^{2} d^{3}\right )} \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )}{4 \, {\left ({\left (c^{6} + 2 \, c^{5} d - 2 \, c^{3} d^{3} - c^{2} d^{4}\right )} f \cos \left (f x + e\right )^{2} + 2 \, {\left (c^{5} d + 2 \, c^{4} d^{2} - 2 \, c^{2} d^{4} - c d^{5}\right )} f \cos \left (f x + e\right ) + {\left (c^{4} d^{2} + 2 \, c^{3} d^{3} - 2 \, c d^{5} - d^{6}\right )} f\right )}}, \frac {3 \, {\left (a^{2} c^{2} \cos \left (f x + e\right )^{2} + 2 \, a^{2} c d \cos \left (f x + e\right ) + a^{2} d^{2}\right )} \sqrt {-c^{2} + d^{2}} \arctan \left (-\frac {\sqrt {-c^{2} + d^{2}} {\left (d \cos \left (f x + e\right ) + c\right )}}{{\left (c^{2} - d^{2}\right )} \sin \left (f x + e\right )}\right ) + {\left (a^{2} c^{3} + 4 \, a^{2} c^{2} d - a^{2} c d^{2} - 4 \, a^{2} d^{3} + {\left (4 \, a^{2} c^{3} + a^{2} c^{2} d - 4 \, a^{2} c d^{2} - a^{2} d^{3}\right )} \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )}{2 \, {\left ({\left (c^{6} + 2 \, c^{5} d - 2 \, c^{3} d^{3} - c^{2} d^{4}\right )} f \cos \left (f x + e\right )^{2} + 2 \, {\left (c^{5} d + 2 \, c^{4} d^{2} - 2 \, c^{2} d^{4} - c d^{5}\right )} f \cos \left (f x + e\right ) + {\left (c^{4} d^{2} + 2 \, c^{3} d^{3} - 2 \, c d^{5} - d^{6}\right )} f\right )}}\right ] \]

input
integrate(sec(f*x+e)*(a+a*sec(f*x+e))^2/(c+d*sec(f*x+e))^3,x, algorithm="f 
ricas")
 
output
[1/4*(3*(a^2*c^2*cos(f*x + e)^2 + 2*a^2*c*d*cos(f*x + e) + a^2*d^2)*sqrt(c 
^2 - d^2)*log((2*c*d*cos(f*x + e) - (c^2 - 2*d^2)*cos(f*x + e)^2 + 2*sqrt( 
c^2 - d^2)*(d*cos(f*x + e) + c)*sin(f*x + e) + 2*c^2 - d^2)/(c^2*cos(f*x + 
 e)^2 + 2*c*d*cos(f*x + e) + d^2)) + 2*(a^2*c^3 + 4*a^2*c^2*d - a^2*c*d^2 
- 4*a^2*d^3 + (4*a^2*c^3 + a^2*c^2*d - 4*a^2*c*d^2 - a^2*d^3)*cos(f*x + e) 
)*sin(f*x + e))/((c^6 + 2*c^5*d - 2*c^3*d^3 - c^2*d^4)*f*cos(f*x + e)^2 + 
2*(c^5*d + 2*c^4*d^2 - 2*c^2*d^4 - c*d^5)*f*cos(f*x + e) + (c^4*d^2 + 2*c^ 
3*d^3 - 2*c*d^5 - d^6)*f), 1/2*(3*(a^2*c^2*cos(f*x + e)^2 + 2*a^2*c*d*cos( 
f*x + e) + a^2*d^2)*sqrt(-c^2 + d^2)*arctan(-sqrt(-c^2 + d^2)*(d*cos(f*x + 
 e) + c)/((c^2 - d^2)*sin(f*x + e))) + (a^2*c^3 + 4*a^2*c^2*d - a^2*c*d^2 
- 4*a^2*d^3 + (4*a^2*c^3 + a^2*c^2*d - 4*a^2*c*d^2 - a^2*d^3)*cos(f*x + e) 
)*sin(f*x + e))/((c^6 + 2*c^5*d - 2*c^3*d^3 - c^2*d^4)*f*cos(f*x + e)^2 + 
2*(c^5*d + 2*c^4*d^2 - 2*c^2*d^4 - c*d^5)*f*cos(f*x + e) + (c^4*d^2 + 2*c^ 
3*d^3 - 2*c*d^5 - d^6)*f)]
 
3.2.99.6 Sympy [F]

\[ \int \frac {\sec (e+f x) (a+a \sec (e+f x))^2}{(c+d \sec (e+f x))^3} \, dx=a^{2} \left (\int \frac {\sec {\left (e + f x \right )}}{c^{3} + 3 c^{2} d \sec {\left (e + f x \right )} + 3 c d^{2} \sec ^{2}{\left (e + f x \right )} + d^{3} \sec ^{3}{\left (e + f x \right )}}\, dx + \int \frac {2 \sec ^{2}{\left (e + f x \right )}}{c^{3} + 3 c^{2} d \sec {\left (e + f x \right )} + 3 c d^{2} \sec ^{2}{\left (e + f x \right )} + d^{3} \sec ^{3}{\left (e + f x \right )}}\, dx + \int \frac {\sec ^{3}{\left (e + f x \right )}}{c^{3} + 3 c^{2} d \sec {\left (e + f x \right )} + 3 c d^{2} \sec ^{2}{\left (e + f x \right )} + d^{3} \sec ^{3}{\left (e + f x \right )}}\, dx\right ) \]

input
integrate(sec(f*x+e)*(a+a*sec(f*x+e))**2/(c+d*sec(f*x+e))**3,x)
 
output
a**2*(Integral(sec(e + f*x)/(c**3 + 3*c**2*d*sec(e + f*x) + 3*c*d**2*sec(e 
 + f*x)**2 + d**3*sec(e + f*x)**3), x) + Integral(2*sec(e + f*x)**2/(c**3 
+ 3*c**2*d*sec(e + f*x) + 3*c*d**2*sec(e + f*x)**2 + d**3*sec(e + f*x)**3) 
, x) + Integral(sec(e + f*x)**3/(c**3 + 3*c**2*d*sec(e + f*x) + 3*c*d**2*s 
ec(e + f*x)**2 + d**3*sec(e + f*x)**3), x))
 
3.2.99.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {\sec (e+f x) (a+a \sec (e+f x))^2}{(c+d \sec (e+f x))^3} \, dx=\text {Exception raised: ValueError} \]

input
integrate(sec(f*x+e)*(a+a*sec(f*x+e))^2/(c+d*sec(f*x+e))^3,x, algorithm="m 
axima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(4*c^2-4*d^2>0)', see `assume?` f 
or more de
 
3.2.99.8 Giac [A] (verification not implemented)

Time = 0.39 (sec) , antiderivative size = 211, normalized size of antiderivative = 1.62 \[ \int \frac {\sec (e+f x) (a+a \sec (e+f x))^2}{(c+d \sec (e+f x))^3} \, dx=-\frac {\frac {3 \, {\left (\pi \left \lfloor \frac {f x + e}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (2 \, c - 2 \, d\right ) + \arctan \left (\frac {c \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - d \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )}{\sqrt {-c^{2} + d^{2}}}\right )\right )} a^{2}}{{\left (c^{2} + 2 \, c d + d^{2}\right )} \sqrt {-c^{2} + d^{2}}} + \frac {3 \, a^{2} c \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{3} - 3 \, a^{2} d \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{3} - 5 \, a^{2} c \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 5 \, a^{2} d \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )}{{\left (c \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - d \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - c - d\right )}^{2} {\left (c^{2} + 2 \, c d + d^{2}\right )}}}{f} \]

input
integrate(sec(f*x+e)*(a+a*sec(f*x+e))^2/(c+d*sec(f*x+e))^3,x, algorithm="g 
iac")
 
output
-(3*(pi*floor(1/2*(f*x + e)/pi + 1/2)*sgn(2*c - 2*d) + arctan((c*tan(1/2*f 
*x + 1/2*e) - d*tan(1/2*f*x + 1/2*e))/sqrt(-c^2 + d^2)))*a^2/((c^2 + 2*c*d 
 + d^2)*sqrt(-c^2 + d^2)) + (3*a^2*c*tan(1/2*f*x + 1/2*e)^3 - 3*a^2*d*tan( 
1/2*f*x + 1/2*e)^3 - 5*a^2*c*tan(1/2*f*x + 1/2*e) - 5*a^2*d*tan(1/2*f*x + 
1/2*e))/((c*tan(1/2*f*x + 1/2*e)^2 - d*tan(1/2*f*x + 1/2*e)^2 - c - d)^2*( 
c^2 + 2*c*d + d^2)))/f
 
3.2.99.9 Mupad [B] (verification not implemented)

Time = 15.30 (sec) , antiderivative size = 158, normalized size of antiderivative = 1.22 \[ \int \frac {\sec (e+f x) (a+a \sec (e+f x))^2}{(c+d \sec (e+f x))^3} \, dx=\frac {\frac {5\,a^2\,\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}{c+d}-\frac {3\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^3\,\left (a^2\,c-a^2\,d\right )}{{\left (c+d\right )}^2}}{f\,\left (2\,c\,d-{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^2\,\left (2\,c^2-2\,d^2\right )+{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^4\,\left (c^2-2\,c\,d+d^2\right )+c^2+d^2\right )}+\frac {3\,a^2\,\mathrm {atanh}\left (\frac {\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )\,\sqrt {c-d}}{\sqrt {c+d}}\right )}{f\,{\left (c+d\right )}^{5/2}\,\sqrt {c-d}} \]

input
int((a + a/cos(e + f*x))^2/(cos(e + f*x)*(c + d/cos(e + f*x))^3),x)
 
output
((5*a^2*tan(e/2 + (f*x)/2))/(c + d) - (3*tan(e/2 + (f*x)/2)^3*(a^2*c - a^2 
*d))/(c + d)^2)/(f*(2*c*d - tan(e/2 + (f*x)/2)^2*(2*c^2 - 2*d^2) + tan(e/2 
 + (f*x)/2)^4*(c^2 - 2*c*d + d^2) + c^2 + d^2)) + (3*a^2*atanh((tan(e/2 + 
(f*x)/2)*(c - d)^(1/2))/(c + d)^(1/2)))/(f*(c + d)^(5/2)*(c - d)^(1/2))